12 research outputs found

    Multisensory mechanisms of body ownership and self-location

    Get PDF
    Having an accurate sense of the spatial boundaries of the body is a prerequisite for interacting with the environment and is thus essential for the survival of any organism with a central nervous system. Every second, our brain receives a staggering amount of information from the body across different sensory channels, each of which features a certain degree of noise. Despite the complexity of the incoming multisensory signals, the brain manages to construct and maintain a stable representation of our own body and its spatial relationships to the external environment. This natural “in-body” experience is such a fundamental subjective feeling that most of us take it for granted. However, patients with lesions in particular brain areas can experience profound disturbances in their normal sense of ownership over their body (somatoparaphrenia) or lose the feeling of being located inside their physical body (out-of-body experiences), suggesting that our “in-body” experience depends on intact neural circuitry in the temporal, frontal, and parietal brain regions. The question at the heart of this thesis relates to how the brain combines visual, tactile, and proprioceptive signals to build an internal representation of the bodily self in space. Over the past two decades, perceptual body illusions have become an important tool for studying the mechanisms underlying our sense of body ownership and self-location. The most influential of these illusions is the rubber hand illusion, in which ownership of an artificial limb is induced via the synchronous stroking of a rubber hand and an individual’s hidden real hand. Studies of this illusion have shown that multisensory integration within the peripersonal space is a key mechanism for bodily self-attribution. In Study I, we showed that the default sense of ownership of one’s real hand, not just the sense of rubber hand ownership, also depends on spatial and temporal multisensory congruence principles implemented in fronto-parietal brain regions. In Studies II and III, we characterized two novel perceptual illusions that provide strong support for the notion that multisensory integration within the peripersonal space is intimately related to the sense of limb ownership, and we examine the role of vision in this process. In Study IV, we investigated a fullbody version of the rubber hand illusion—the “out-of-body illusion”—and show that it can be used to induce predictable changes in one’s sense of self-location and body ownership. Finally, in Study V, we used the out-of-body illusion to “perceptually teleport” participants during brain imaging and identify activity patterns specific to the sense of self-location in a given position in space. Together, these findings shed light on the role of multisensory integration in building the experience of the bodily self in space and provide initial evidence for how representations of body ownership and self-location interact in the brain

    Decoding illusory self-location from activity in the human hippocampus

    Get PDF
    Decades of research have demonstrated a role for the hippocampus in spatial navigation and episodic and spatial memory. However, empirical evidence linking hippocampal activity to the perceptual experience of being physically located at a particular place in the environment is lacking. In this study, we used a multisensory out-of-body illusion to perceptually ‘teleport’ six healthy participants between two different locations in the scanner room during high-resolution functional magnetic resonance imaging (fMRI). The participants were fitted with MRI-compatible head-mounted displays that changed their first-person visual perspective to that of a pair of cameras placed in one of two corners of the scanner room. To elicit the illusion of being physically located in this position, we delivered synchronous visuo-tactile stimulation in the form of an object moving toward the cameras coupled with touches applied to the participant’s chest. Asynchronous visuo-tactile stimulation did not induce the illusion and served as a control condition. We found that illusory self-location could be successfully decoded from patterns of activity in the hippocampus in all of the participants in the synchronous (P 0.05). At the group-level, the decoding accuracy was significantly higher in the synchronous than in the asynchronous condition (P = 0.012). These findings associate hippocampal activity with the perceived location of the bodily self in space, which suggests that the human hippocampus is involved not only in spatial navigation and memory but also in the construction of our sense of bodily self-location

    The Illusion of Owning a Third Arm

    Get PDF
    Could it be possible that, in the not-so-distant future, we will be able to reshape the human body so as to have extra limbs? A third arm helping us out with the weekly shopping in the local grocery store, or an extra artificial limb assisting a paralysed person? Here we report a perceptual illusion in which a rubber right hand, placed beside the real hand in full view of the participant, is perceived as a supernumerary limb belonging to the participant's own body. This effect was supported by questionnaire data in conjunction with physiological evidence obtained from skin conductance responses when physically threatening either the rubber hand or the real one. In four well-controlled experiments, we demonstrate the minimal required conditions for the elicitation of this “supernumerary hand illusion”. In the fifth, and final experiment, we show that the illusion reported here is qualitatively different from the traditional rubber hand illusion as it is characterised by less disownership of the real hand and a stronger feeling of having two right hands. These results suggest that the artificial hand ‘borrows’ some of the multisensory processes that represent the real hand, leading to duplication of touch and ownership of two right arms. This work represents a major advance because it challenges the traditional view of the gross morphology of the human body as a fundamental constraint on what we can come to experience as our physical self, by showing that the body representation can easily be updated to incorporate an additional limb

    Being Barbie: The Size of One’s Own Body Determines the Perceived Size of the World

    Get PDF
    A classical question in philosophy and psychology is if the sense of one's body influences how one visually perceives the world. Several theoreticians have suggested that our own body serves as a fundamental reference in visual perception of sizes and distances, although compelling experimental evidence for this hypothesis is lacking. In contrast, modern textbooks typically explain the perception of object size and distance by the combination of information from different visual cues. Here, we describe full body illusions in which subjects experience the ownership of a doll's body (80 cm or 30 cm) and a giant's body (400 cm) and use these as tools to demonstrate that the size of one's sensed own body directly influences the perception of object size and distance. These effects were quantified in ten separate experiments with complementary verbal, questionnaire, manual, walking, and physiological measures. When participants experienced the tiny body as their own, they perceived objects to be larger and farther away, and when they experienced the large-body illusion, they perceived objects to be smaller and nearer. Importantly, despite identical retinal input, this “body size effect” was greater when the participants experienced a sense of ownership of the artificial bodies compared to a control condition in which ownership was disrupted. These findings are fundamentally important as they suggest a causal relationship between the representations of body space and external space. Thus, our own body size affects how we perceive the world

    Virtual rope slider

    No full text

    Attention and awareness in the dorsal attention network

    No full text
    This dataset contains structural and functional MRI images from human subjects learning to use subliminal and superliminal stimuli to perform a Posner-like reaction time task. Download the README.txt file for a detailed description of this dataset's contentThis dataset is too large to download directly from this item page. You can access and download the data via Globus at this link:https://app.globus.org/file-manager?origin_id=dc43f461-0ca7-4203-848c-33a9fc00a464&origin_path=%2F9425-b553%2F (See https://docs.globus.org/how-to/get-started/ for instructions on how to use Globus, sign-in is required).The attention schema theory (AST) posits a specific relationship between subjective awareness and attention, in which awareness is the control model that the brain uses to aid in the endogenous control of attention. We proposed that the right temporoparietal junction (TPJ) is involved in that interaction between awareness and attention. In previous experiments, we developed a behavioral paradigm in human subjects to manipulate awareness and attention. The paradigm involved a visual cue that could be used to guide a shift of attention to a target stimulus. In task 1, subjects were aware of the visual cue, and their endogenous control mechanism was able to use the cue to help control attention. In task 2, subjects were unaware of the visual cue, and their endogenous control mechanism was no longer able to use it to control attention, even though the cue still had a measurable effect on other aspects of behavior. Here we tested the two tasks while scanning brain activity in human volunteers. We predicted that the right TPJ would be active in relation to the cue in task 1, but not in task 2. This prediction was confirmed. The right TPJ was active in relation to the cue in task 1; it was not measurably active in task 2; the difference was significant. In our interpretation, the right TPJ is involved in a complex interaction in which awareness aids in the control of attention

    Multisensory correlations-Not tactile expectations-Determine the sense of body ownership.

    No full text
    Can the mere expectation of a sensory event being about to occur on an artificial limb be sufficient to elicit an illusory sense of ownership over said limb? This issue is currently under debate and studies using two different paradigms have presented conflicting results. Here, we employed the two relevant paradigms, namely, the magnetic touch illusion and the "tactile expectation" version of the rubber hand illusion, to clarify the role of tactile expectations in the process of attributing ownership to limbs. The illusory senses of ownership and 'magnetic touch' were quantified using questionnaires, threat-evoked skin conductance responses and a combination of motion tracking synchronized with real-time subjective ratings and skin conductance. The results showed that the magnetic touch illusion was dependent on concurrent visual and tactile stimulation and that visually induced tactile expectations alone were insufficient. Moreover, in this study, tactile expectations were not associated with the rubber hand illusion, neither in terms of subjective ratings nor skin conductance changes. Together, these findings contradict the notion that the brain uses predictions of upcoming sensory events to determine whether or not a limb belongs to the self, and, instead, emphasize the importance of correlated multisensory information
    corecore